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WEIBULL ACCELERATED LIFE TESTS WHEN THERE ARE
COMPETING CAUSES OF FAILURE
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Key Words and Phrases: safe dose levels, competing risks,
accelerated lifetests, Hartley and Sielkin model.

ABSTRACT

Accelerated life testing of a product under more severe
than normal conditions is commonly used to reduce test time
and costs. Data collected at such accelerated conditions are
used to obtain estimates of the parameters of a stress transla-
tion function. This function is then used to make inference
about the product's life under normal operating conditions.

We consider the problem of accelerated life tests when
the product of interest is a p component series system. Each
of the components is assumed to have an independent Weibull
time to failure distribution with different shape parameters
and different scale parameters which are increasing functions
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of the stress. A general model is used for the scale parameter
which includes the standard engineering models as special
cases. This model also has an appealing biological interpreta-
tion.

Maximum Tikelihood estimators of the component parameters
are obtained for type 1, type II, and progressive censoring.
These estimators are used to obtain estimators of the probab-
ility of component and system survival under normal operating
conditions. This method is illustrated by an example.

- e

1. INTRODUCTION 3

Accelerated life testing of a product is often used to
obtain information on its performance under normal use condi-
tions. Such testing involves subjecting test items to condi- ]
tions more severe than encountered in the item's everyday use.
This results in decreasing the item's mean life and leads to
shorter test times and reduced experimental costs. In engi-

{ﬁ neering applications accelerated conditions are produced by

w testing items at higher than normal temperature, voltage,
pressure, load, etc. In biological applications accelerated

conditions arise when large doses of a chemical or radiological

: agent are given. In both cases the data collected at the high

-? : stresses is used to extrapolate to some low stress level where

4

{

b)

testing is not feasible.

Several authors have considered the problem of analyzing
accelerated life tests when the product has only a single mode
of failure. Nelson (1974a) has a bibliography of applications

; and analysis of each tests. Mann, Schafer, and Singpurwalla

2 . (1974) derive least squares and maximum 1ikelihood estimators
of model parameters when the underlying failure distribution is
exponential. Nelson (1972c) describes a graphical solution to

this problem.




Nelson (1970) derives graphical, maximum likelihood and
least squares estimators of model parameters when the under-
lying distribution is Weibull. Meeker and Nelson (1974a and
1974b) derive maximum likelihood estimators of the model para-
meters in the Weibull case when the data is type I or type II
censored. They also discuss the optimal strategy for designing
such tests. Mann (1972) has also discussed optimal design
strategy. Tolerance bounds for the Weibull model are discussed
in Mann (1978).

Several papers have been written on analyzing accelerated
life tests when the failure distribution is normal or log
normal. In a series of papers Nelson (1971, 1972a and 1972b)
has considered maximum likelihood, least squares, and graphical
estimation procedures for an Arrhenius model when all failure
times are known. For this model it is assumed that mean of the
log failure time is linear in the stress, and that the variance
is independent of the stress. Nelson and Hahn (1972, 1973)
derive best linear unbiased estimators of the regression para-
meters of this model for type II censored samples. Kielpinski
and Nelson (1975) discuss maximum likelihood estimation pro-
cedures for this model when the sample is type I censored.

Several papers have been written on analyzing accelerated
life tests when more than one failure mode is present. Here
failures can occur from any one of k independent causes. Sam-
ple information consists of a failure time for each item and
the cause of failure. Assuming that for a given stress V each
failure mode follows an independent log normal distribution
with parameters u (V) = a; + 8; V, and 042 constant with
respect toV, i =1, ..., k, Nelson (1973) obtains graphical
estimates of ay and By when there is no censoring. For

this model, Nelson (1974b) obtains maximum 1ikelihood esti-
mates of a;, 8; and 01’.
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Klein and Basu (1980a) have considered the above problem
when the component lifetimes are exponentially distributed and
the data is type I, type II or progressively censored. Klein
and Basu (1980b) have described the analysis of accelerated life
tests of series systems when the component failure times follow
a Weibull distribution with common shape parameter. The object
of this paper is to consider the case when the shape parameters
are different.

In section 2 we present the model to be used for acceler-
ated life tests in the competing risks framework. In section
3 we use this model to analyze accelerated life tests where
there are competing causes of failure and the data is type I,
type II, or progressively censored. Finally, in section 4 an
example is presented.

2. THE MODEL

The problem considered in the sequel is as follows. Consi-

der a p component system with component lifetimes X], XZ, ...,xp.

Suppose that under normal stress conditions these components have
long lifetimes making testing at such conditions unfeasible. To
reduce test time and cost, s stresses, V], ceey Vs are selected
and a life test is conducted at constant application of the
selected stress. We wish to use this information to make infer-

ence about the component lifetimes under normal stress conditions.

Consider the following model introduced by Klein and Basu
(1980b) elsewhere.

At a stress Vi, i=1, ..., s assume that the jth component
has a hazard rate given by
hj(xt vi; gjo g_j) = gj(x’ gj)xj(vi’ gj) (2°])

i=1, ..., j=1, ..., p.

For gj(x, gd) a Weibull form is assumed, that is

e
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os-1

= .t d .
9;(x, a5) = ozt ,ay2>0,t>0. (2.2)

The os's may vary from component to component to allow for dif-
ferences in component reliability.
For xj(v, éd) we assume a model of the form

K
J

where ejo(V) = 1 and ej](V), cees ejkj(v) are kj non-decreasing

functions of V. The ej(-)'s may differ from one component to

another.
This model includes the standard models, namely, the power

‘ B.
rule with xj(v, §,)=B.0v J]; the Arrhenius reaction rate model
with Aj(v. ﬁd) = exp(Bjo - Bj]/V); and the Eyring model for a

single stress with Aj(v, gd) =y 9! exp(Bjo - sz/v) as special
cases.

The model also can be derived from the interpretation of
the effects of a carcinogen on a cell as proposed by Armitage
and Dol1l (1961). For details see Klein and Basu (1980b). To
produce cancer in a single cell, k independent events must
occur. The effect of an increased dose of a carcinogen is to
increase the rate at which these k events occur. If, for the
jth disease, this increase is of the form exp(sjzejz(v)) for
L=1, ..., kj the model (2.3) is obtained. If this increase
is assumed linear the model of Hartley and Sielkin (1977) is
obtained. Thus the mode) of Hartley and Sielkin is a first
order Taylor Series approximation to (2.3) when ejl(V) =V for
L=1, ...y kj.

Consider an accelerated life test conducted at constant
applications of s stress level, V], cees VS. Let Xi]. XiZ’
caes xip denote the component lifetimes of the p component
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series system put on test at stress Vi. Assume that the compo-
nent lifetimes are independent. We are not allowed to observe
Xi]. cees xip directly but, instead, we observe Yi =
minimum(xi], cees xip) and an indicator variable which describes
which of the p components is the minimum. We shall use the
method of maximum likelihood to estimate a5 and g; =

(Bjgs --» Bjkj)' i =1, ..., p for various censoring schemes.

3. ESTIMATION OF PARAMETERS

3.1 Type I censoring

For this censoring scheme n, items are put on test at
stress Vi, i=1,...,s. The pth system on test at stress Vi
is tested until it fails or until some fixed time Tyq at which
it is removed from the study. The Tiz's may very from item to
item to allow for staggered entry into the study. Let r; be the
number of systems which fail prior to their censoring time at
stress vi. Let T denote the number of these whose failure was
caused by failure of the jth component. Let xijz denote the

failure time of the rij systems whose failure is due to failure '
of component j. For convenience let Yiz’ i=1, «..s S,
L=1, ..., r denote the failure times of the r; systems
regardless of the cause of failure.

The overall 1og likelihood can be written as
P
anL = ) anL. (3.1.1)
Fo
where
s ( kj "ij
Ly = ,Z,’ij zgoejlejl(vi)) + ryjtnay + (az-1) 221 RnXy 5

k
J
- Tilag)exp (zzo Bjgf5e(Vi))s =1, .up (3.1.2)
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T.(a;) = Y.J + t J, i=1,...,s (3.1.3)
L 9.21 IRVARD
with 112, i=1, ...,8,2=1, ..., n;-ry the censoring times
of the ng-r; systems removed from the accelerated life test.
When all items on test at stress Vi have a common censoring

ry o
time, t;, then Ti(aj) = Z Y; J 4 (ni-r-,i)'ri.

The likelihood equations, which must be solved numer1ca11y
for the maximum likelihood estimators, ay BjO’ B 12 veeo Bka|

are:
6§ 2n L,
0 = —-—n—-—-\l:
Sa .
J
rs.
s |r.. ij k.
LN R 1 J
121 % zZ] ks e - T( )(a Yexp (zzo Bi2852(V4) ) | »
J=1, ... p (3.1.4)
where
(]) i a. N:=r:
- J J =
T (aj) Yo YiganY,, 4 221 T, 1=, s,
(3.1.5)
and

k.
j_ S J
0= ), g ri85ulVq) - Tila;)85,(V;)exp (QZO B3g850 (Vi)

J=l P u=0, ...,k (3.1.6)

ot




The second partial derivatives of the log 1ikelihood are

§2anL., S r..
-—l- 7 A @y, 50, e (31.7)
8a.? i=1 a,2 1 J
J J
(2) o
Ti (aj) = 221 Yn(aniz)2 +
ni=r; o:‘:i
zgl rgz(znru)z, i=1, ...,0p, (3.1.8)
SanL ) (v)T$ (ay)
A0, (VT o,
6aj68ju = 1] Jut 1 J
J=1, ..., p u=0,...,kj (3.1.9)
and
62£nLJ- S
w=1, ..., kj u=20, ..., kj. (3.1.10)
To find the information matrix let
1 if Yil < Ty i=1, ...,8,2=1, ..., n;
Cig =
0 otherwise (3.1.11)
and define
p cxj
g = P(Cig=1) =1 -exp( - j;l Aj3Tin ) s
i=1, ..., =1, ...,n., (3.1.12)

i
The conditional density function of Yiz given Ciz =1 is




.4_’.‘

e

AR

I
.

fodh i e .
A ey . n PO

R g . e i e e A —

P uj"]
i e Ry
f(yillciz = 1) = exp (- p) Xijy ) » Y < T4y
i =
0 otherwise. (3.1.13)
Now
E(Ti(aj)) = E (9,21 Cig¥id + 221(1 - G143 )
N1, as E o § cxm-’l
= 3 27 Ay ™ exp (- A dy
2=1 é (m,:] (Im "ﬂ'y ) [ m=1 'foy )
n
i a
J m
+ R,Z’I 159 exp ( m§1 NimTig)
i=1, ...,p J=1, ...,5. (3.1.14)
Similarly,

where the integral must be evaluated numerically.
(1) -
E(Ti (aj))

oo, o o -1 %
g:.z-] £ wy JQ/“.Y (mE1 amkimy " ) exp ( - mg'l Ai ) dy.

-
=

n, o
", (3.1.15)

i a,
+ 7 ot d(ent, exp ( E AsnTs
gty TR oLy MimTig

et o,

PRI W TRPR. )




e(1(ay)) -

n:
1 Tiz uj . 2 v %'] ) AL Qm d
lzl £ v ) (mzl AL Jex ( mgl g Jay
N . o
+ 221 Ti%(ln'l'il)zexp( mZ] AiJTll )9
i=1, ..., s Jj=1, ..., 0p. (3.1.16)

Now the probability that the zth

due to failure of cause j at stress i fori =1, ..., s,

j= ]’ LI ] p’ 2/= ], ceasy ni iS

system fails prior to time Tig

Ts a,;-] a
. L 3 m
Viio = Ay exp (- E A u ") du (3.1.17)
ijg g ij m=] m
which must be evaluated numerically. Hence
e (3.1.18)
- Viso- 1.
E(rij) o ije

The asymptotic covariance matrix can now be obtained by
using (3.1.18), (3.1.16), (3.1.15), and (3.1.14) to calculate
the expected values of (3.1.7), (3.1.9), and (3.1.10). An
gstimator of this matrix can be obtained by substituting ;j’ and
ﬁd in the appropriate expressions.

3.2 Type 11 censoring.

For this censoring scheme ny systems are put on test at each
of the s stress levels and testing continues until a preassigned
number ry have failed at which time testing is stopped. Suppose
that Tij systems fail due to failure of the jth component ,
3=, ... P Let Xioqs oens xijrij denote the failure time
of those rjj Systems at stress V; whose failure was caused by

DO Wi At D1 Tt n + -
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failure of the jth component, i =1, ..., s, =1, ..., P,

L=1, ..., rij' Let Yi(l)' cees Yi(ri) denote the ordered

failure times of the r; systems observed to fail at stress 1,
regardless of the mode of failure.
One can show that the likelihood of interest is given by

(3.1.1) and (3.1.2) with
Y.

i ooy a,
Tilag) = 1 Yit(e) * (ng - "i”iiri)’
i=1, ..., Jj=1, ..., p. (3.2.1)
The likelihood equations are given by (3.1.4) and (3,1.5) with

r

T(])( ) i a, aj .
i ley) = QZI il Yige) + (g - rViTe ) i (r, )
i=1, «eop 8 J =1, ...5 p. (3.2.2)

The matrix of second partial derivatives is given by (3.1.7) to
(3.1.9) with

() = ;i Yooy (2nYs oy )2 + (g = P dYad (anYy (1)
i A 251 i(e) i(2) i P70 (ry) 1(ri)
i=1, ...,p 1=1, ...,5. (3.2.3)

To find the information matrix note that the density of

ny- as-1 . -
i 1- - Y
(2 - 1)ny - 2): SZ,*iJ“jydz)) exp ( g AigYile))
exp|-(n, -2+ 1) 5 A % )] o< <o
g g 1t 11T 2 i) <
L=1, ..., n, i=1, ..., s. (3.2.4)
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Hence,
E(Ty(ay)) =

i a,
Ly LYt i) e *

o« .

(my - ry) | yiiri)f(yi(ri))dyi(ri)‘ (3.2.5)

(1) AR
B3 ag)) = BT Yitayt¥iqe) Py () i e)
© a
tng-r) S yi'zri)"'"yi(ri)f(y'i(ri))dyi(ri) (3.2.6)

(2) A 2
E(Ti (O'J)) = EZI Ayi(l)(znyi(l)) f(yi(z))dyi(l)

o O

*(ny-ry) 5 yii,i)(lnyi(,i))zf(yi(,i))dyi(ri).

i=1, ..., J=1,...,0p. (3.2.7)

These integrals must be evaluated numerically. Now with r
fixed, (ri], cee rip) has a multinomial distribution with
parameters “ij given

Moo = [ Accon 3 exp (= 5 Aqou ?) d (3.2.8)
1 I F i e e

SO

E(rij) = ri"ij‘

The information matrix can be obtained by using (3.2.5),
(3.2.6), (3.2.7), and (3.2.8) to calculate the expected values
of (3.1.7), (3.1.9), and (3.2.10). An estimate of this matrix
can be obtained by substituting &j and éd in the appropriate
expressions.
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3.3 _Progressive censoring

For this censoring scheme N1 items are put on test at the
ith stress level. Let Ti1s +-s T4M be fixed censoring times
: i

at which a fixed numer of items, Ci1s ---» Cyjy, are removed from
B |
the test. At time t;, either a fixed number c;y, items are
i i

removed from the test or testing is terminated with a random
number, CsM,» Systems still functioning. Assume that N, is
i

sufficiently large to allow removal of the required number of

items.
M

i
Let n; = N; - ) C;x be the number of items which are
k=1
observed to fail and let Yik’ £=1, ..., n; denote their failure
times. That is, Yil' cees Yin are the n; system failure times
: i

regardless of the mode of failure. Suppose that rij of the n;
failures were caused by failure of the jth component, and the

respective failure times are xijl' cees xijr s, 1 =1, .00y S,
iJ

=1, ...,p.

The 1ikelihood function of interest is given by (3.1.1)
which can be factored into component 1ikelihoods as in (3.1.2)
with

e = 1o+ T o
a;) = Yo 4 Ti%Cios J =1, oy py 121, ...y S,
M) as1 oy i

The likelihood equations are as in (3.1.4), (3.1.5) with

n M.
ia, i a

j=1,...,p i=1,..,s. (3.3.2)

The matrix of second partial derivatives are as in (3.1.6),

[

e - "
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(3.1.7), and (3.1.9) with

M

i a i a
rgz)(aj) - L viltany, )2 g

J 2
jp{enTy) e

J=1, ...,p di=1, ...,s. (3.3.3)

To calculate E(T;(a;)), £(1{1 () and E(1{(ay))
consider any of the s stress levels. The n; observed failures,
Yiz' have the following survival function

Q.
F}(y) = exp - [ g Ai.y J ). y>0,i=1, ...,s. (3.3.4)
=Y -
let fiz denote the number of failures in the interval
[Ti 2_]’ Tiz)’ 9: = ], essey Mi + ] Where T.iM +] = ™, Define
D— - - 1‘ _

F}k = F}(Tiz) and Fil =1 - Fiﬂ' and let Uizk, k = ], sy fil
denote the failure times of the fiz items which fail in this

interval.
Cohen (1963) shows that

NFil for £ =1

E(fyy) = 21 ¢y
(N- F =S )(Fyp - Fypq) For =1, oo, My +1
k=1 F,
ik (3.3.5)

Ty eues Mi if cmi is random

if cMi is fixed and for %

Now
{i a. fi GJ
E ud.) =EE v, If:.)
(o) Vi (L, Vialfie
%
= E(fi WUkl Tyg < Ui < Typ)

= E(f,,).

RS T TP S (LW T o sy *

o

e )
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Tig -1 v a
j‘ri u:‘j(qg aig¥ A Jexp (- qzl At ) du/(Fyq - Figy)
2

for2g =1, ..., M (3.3.6)

i
where E(fi ) is given in (3.3.5) and the integral must be

evaluated numerically, with similar expressions for
f.

fig' 12' aj 2 .
E( Z] 12klnu1zk] and E (kzl Uk (enUs o )?) . Using these
k=

'y

‘xvj:w.:"

expressions when a fixed number of items are removed at time
TiMi we have

¥
X "3 8 §
: E(Ti(aj)) = N; é u [k=l “kxij“ Jexp (- 1A ) du
; ¢
% k-1
% ;i = o, kgl !

-1 ¢ u
3y gs1 1% !1.2 Fig
p i

E o Mi @

;i exp ( - o Ay ) du + 221 CipTig » (3.3.7)
A o
; E(T(])(a )) = N f u j!Lnu( E APy k-1,
{ M
3 a i a
% exp (- kEIAiku'kJ du + 2£] cizrigzn(ril)

.

1c © q o a
_i2 3 k-1 k
- ) u J2nu f Y exp (- ) Aju " )du
21 F, £u (&) e T Jexe ( kzl w )

(3.3.8)

o O n TR TR YRR MY
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and
6(1{2(ay)) =

o«

s A Qa Qa
N. u J(%nu)? a A U k-1 exp (- oot K} du
i (L aone ™Y oo (- § ™)
M.

i ' o

2 k-

- 2{} F? f u J(lnu)2 ( E @A U ]) .
Til k"]

exp (- EA- 0"‘)d + 21 c. flj(g )2
P KLy ik Y MR A AN

i=1, ..., j=1, ..., p. (3.3.9)

When all testing stops at time TiM. there are
i

Mi'] Mi
ey, = Nj - Z Cip - Z f;, items removed from test. Thus
i 2=1 2=1
iy ) = Fy, 0= b Sl
Ly = N- = .
Mt M 51 F
And, here,
T.
iM. a, o, -1
k
E(Ti(aj))= Ni{f Tl ( E AU )
0 k=1
- " %3
exp ( kEl Ay ) du + Foy TiM }
Mi -1

TiM, « a, -1 o
-7 ha ] iy ( E O A g v k ) exp (- E Ajpd k) du
R.'] ri ) k=1

BT T = EWT Y S TR PR ST N T
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J J
+ CioTqh - Cio ™ Ti » (3.3.10
221 12Tk 221 i R, )

BT (a;)) -

Tim,
Ni{[0 ! JJLnu( E “k"rk“ )exp( § ik k)du

M. -1

o 1 C; TiM: O o.-1
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i i =1 F. 1, k=1
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and

2
E(1{2)(ay)) =
T a. Q [0}
Niﬂ{ ™y J(2nu)? (kglakxiku k']] exp ( - kglliku k) du
M,I']

a
J 2 2

+F
M,

TiM
+ f i uaj(znu)2 ( E akkiku ] exp ( - E Ak k) du ]
Tig k=1

Mi'] a
+ IZI cizrig(zntil)’. (3.3.12)

Also when °1M1 is random, n; 1s a random variable with mean
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Substituting these expectations in the appropriate places in
equations (3.1.7) to (3.1.10) yields the asymptotic covariance
matrix of (BjO’ cees jkj' aj) for this censoring scheme.

3.4 Estimation of Parameters at the Usage Stress

A

Let a5 Bjgs --es jkj be the maximum likelihood estimators

of ajs Bjgs +-vs Byg s j=1, ..., p obtained from an accelerated
life test as describdd in section 3.1 to 3.3. Let {j denote the

covariance matrix of (Bjo. coen By, aj). Recall Zj is of the
. J

form

i) Miww
3 - I (3.4.1)

T 2
! (5,0)  Caa
where Z(j’j) is the covariance matrix of (BjO’ cres Bjkj)’ f(j,a)
is the vector of covariances between ; and (Bins «--s Biy )
J jo ka
(ﬁjo, cees gjkj) and o;a is the variance of &j' Let Xj be an

estimator of zj. Let V, denote the design stress of the system,

For sufficiently large sample sizes the vector
(Bjo' cers Byp aj)is approximately normal with mean vector
(Bjgs -+ Bji» aj)and covariance matrix Zj. Following

Thomas, Bain and Antle (1969) we recommend sample sizes of at

Jeast a hundred at each stress level.
At stress Vu the maximum likelihood estimator of the scale

parameter of the jth components time to failure distribution,
Aju, is




k .
~ J A
Aju = exp (220 szejz(vu)) » j = ], ceey Po (3-4.2)

For sufficiently large sample sizes ;ju has a Tog normal distri-
bution with mean Aju and variance °§u given by

o§u =1, ej](vu),..., ejkj(vu))zjj(l, ej](vu),...,ejkj(vu))T.

(3.4.3)
Hence a reduced biased estimator of Aju is
n, _ A Az .
Aju = >‘ju exp(-oju/Z), =1, ..., p (3.4.4)

where 3§u is obtained by replacing ij bxmzjj in (3.4.3). If
ij were known the mean squared error of Aju is Agu(exp(oﬁu)-l)
which is always sma]let than Aéu(exp(20§u)-2 exp(oﬁu)+1), the
mean squared error of Aju' An asymptotic (1 - a) x 100% confi-

dence interval for Aju is given by

(;juexp(‘zl_alzsju), ijuexp(zl_alzgju)), j = ], «se9 P. (3.4.4)

The maximum 1ikelihood estimator of the jth

cumulative hazard rate at stress Vu and time t, Aju(t) is given
by n

~ ajl\
Aju(t) =t YA

components

ju? j= Ty ouvs Ps t 30. (3.4.5)

This estimator is also biased. An asymptotically unbiased
estimator of Aju(t) is

Rj(t) = Ay (exp(-03(t)/2), 5 =1, .ccipy t>0
(3.4.6)
where

a}(t) = (1, 85,(V,), O3k, (W) 2nt)

550, 05,00, .., TR ent). (3.4.7)
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This estimator also has smaller mean squared error than Kju(t).
Asymptotic (1 - a) x 100% confidence intervals for A(t) are

Ju
given by
(Xju(t)exp(-ll '(!/Zgj(t)) ’ ?\ju(t)exp(ll_alzgj(t)) .

i=1l,....p t>0, (3.4.8)

th

The maximum likelihood estimator of the j~ components

survival function at time t and stress Vu is given by

Fiult) = expl-h (6), 5 =1, .y (3.4.9)

Approximate (1 - a) x 100% confidence intervals for the jth

components survival function at time t and stress Vu are given
by
exp(Zy_ 100:(t)) ~  exp(-Zy_ ,,0:(t))
: ju
=1, ..., p t>0 - (3.4.10)

(Fyult)

Let x be a subset of 1, ..., p of cardinality k. We are

interested in obtaining estimators of
R = nF 0, (3.4.11)
jex

the survival function of an item which can fail only from the
failure of components indexed by elements of x. When
k={1, ..., p} then (3.4.1) is the overall system survival
function. When « is a proper subset of {1, ..., p} then (3.4.1)
represents the survival function of a system which has been
redesigned so that those components indexed by k€ are extremely
reliable. Clearly, the maximum 1ikelihood estimator of FﬁK)(t)
is

Fede) = 0 Fy e, (3.4.12)
jex
An approximate (1 - a) x 100% confidence interval for FS")(t) is

F RN ¥y EL SRS WY SRR PSS




~expl{a: Z. ) ~exp(-o0; 2. )
(1 Fiu WYL 1 F e Y (3.4.13)
- JEK

1/k
where y = liil:gl——- . This is a conservative interval in the
following sense. From (3.4.10)

xp(Z,55(t))

. exp(-Z,04(t))
FuWFy ) 7Y

A e
3 (1’0)]/k=P(Fju(t) ) for jex.

J Since (?su(t)’ ES'U(t)) are asymptotically independent for j#j',
Iy

exp(Z,a:(t)) . exp(-2.0:(t))
r’3; rf;

(1-0)=P(E3u(t) < Fyp(e)sFy, () , for all jex)

Zo4(t . -Z7.0.(t
s e B, BT,

<P(NF ju

Jex Ju Jex

3.5 Dependent Risks

In sections 3.1 - 3.4 it was assumed that the component
lifetimes were independent. This assumption may be relaxed by
considering a fatal shock model. For simplicity we shall
illustrate this model for the bivariate case. '

Let U], U2, U2 be independent Weibull random variables
with shape parameters A1 Qs Qqp and scale parameters
M (Vs B1)s Ap(V, By), and Ay5(V, By,) in an environment charac-
terized by a constant application of a stress V. Here U]
represents the time until a shock destroys the first component
only, U2 the time until a shock destroys the second component,
and U]Z the time until a shock destroys both components. If
(X], Xz) represent the component lifetimes then, clearly,

X] = min(U]. U]Z)' and X, = min(Uz, ”12” The component sur-
vival functions are not Weibull, but are given by

r o4 ay,
j(t; V) = exP(')‘j(v' QJ)t - A]Z(v’ §;|2)t )»

j=1,2 t>o. (3.5.1)
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An accelerated life test can be conducted as before where
now the parameters of interest are O1s Ogs 0925 Bys Bps Bya-
The results of section 3.4 can he used to obtain estimators of
the component survival function under normal conditions.

4. EXAMPLE

As an example of these procedures we shall consider an
example given in Nelson (1974a). The problem is to analyze
an accelerated life test conducted on Class-H insulation
systems for electric motors. There are three possible types
of insulation failures corresponding to distinct parts of the
insulation system, namely Turn, Phase, and Ground. The failure
cause is determined by an engineering examination of the failed
motor.

The purpose of the experiment is to estimate the average
life of such insulation systems at a design temperature of
1800 C. A median life of 20,000 hours is necessary for the
satisfactory performance of these insulation systems. To reduce
test time and cost an accelerated life test was conducted at 4
accelerated temperatures, namely, 1900 C, 2200 C, 2400 C, and
2600 C.

The accelerated life test was conducted by putting 10
motors on test at each of the 4 stress levels. Motors were run
until they failed, then the cause of failure was found and
isolated and motors were run until a second failure occurred.
The results of this study are reported in Nelson (1974a). The
data followed a log]0 normal distribution so the Weibull theory
results do not apply.

To il1lustrate the results of the previous section Nelson's
example is reproduced by simulating the life test using a
Weibull model with shape parameter 1 for each failure cause.
The shift parameters are chosen by fitting an Arrhenius Reaction

Rate model to the estimated component medians obtained by Nelson.

The model is

i
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A-i(vi §_J) = exP(Bjo + Bj'lej](v))' i=12,3 (4.1)

where ej](V) = -1000/V for j = 1, 2, 3 and V is the temperature
in degrees absolute. The absolute temperature is 273.16 plus the
centigrade temperature. The values of (BjO’ le)’ j=1,2,3
are as follows:

Table 4.2 True Values of 80, B]

Bo B
Turn 8.2607 8.0106
Phase 3.7748 6.1253
Ground 13.0340 _ 10.6487

Twenty Weibull observations were generated at each of the four
stress levels. The data are in Table 4.1.

A Newton-Raphson procedure was used to solve the likelihood
equations. The integrals in (3.1.14), (3.1.15), (3.1.16), and
(3.1.17) were evaluated using a repeated seven point Gauss-
Leguerre formula. The maximum likelihood estimates are as
follows:

TURN: o = 1.0099, B, = 6.1363, B, = 6.9390
PHASE: a = .9993, B = 3.5831, B, = 6.0272
GROUND: o = 1.0395, By = 7.9788 B, = 8.2679.

The estimated covariance matrices are:
YTURN 9.8252  5.3254 .1178
5.3254  3.1306 .1283
A .78 1283 .0188
Ipnasg = [21.7658 11.6281 .2217
11.6281  6.6803 .2442
n .2282 .2442 0353
Iorounp = /18-2378  9.8173  .1856
9.8173  5.6782  .2033
1856  .2033  .0299
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Using these estimates, at a design stress of 180% the
estimates of the probability of component survival at a mission
time of 20,000 hours is .1020 for turn failures, .3023 for phase
failures, and .3574 for ground failures. 90% confidence intervals
for the probability of component survival at 20,000 hours and a
temperature of 180° C are:

TURN - (.0187, .2701),
PHASE - (.0749, .5756),
GROUND - (.1191, .6080).

Using equations (3.4.12) and (3.4.13) the maximum 1ikelihood
estimate and 90% confidence interval for system reliability at
20,000 hours and a temperature of 1800 C are .0110 and (.000027,
.1402). Similarly, a 90% confidence interval for a redesigned
system in which turn failures cannot occur is (.0043, .4024).

We note that the above confidence intervals are suspect due
to the relatively small sample sizes and are provided here to
only to illustrate this procedure.
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